BRASPEN Journal
https://braspenjournal.org/article/doi/10.37111/braspenj.2017.32.3.01
BRASPEN Journal
Artigo Original

Evaluation of Advanced Bioimpedance Spectroscopy Models for Measuring Body Composition in Healthy Adults (NHANES 1999- 2004) and Those Undergoing Massive Weight Loss Following Roux-en-Y Gastric Bypass Surgery

Avaliação de modelos avançados de espectroscopia de bioimpedância para medir a composição do corpo em adultos saudáveis (NHANES 1999-2004) e aqueles que sofrem perda de peso em massa após a cirurgia de bypass gástrico Roux-en-Y

Abigail J. Johnson, James R. Matthie, Adam Kuchnia, Levi M. Teigen, Lauren M. Beckman, Jennifer R. Mager, Sarah A. Nicklay, Urvashi Mulasi, Shalamar D. Sibley, Emily Nagel, Carrie P. Earthman

Downloads: 0
Views: 204

Abstract

Introduction: Bioimpedance spectroscopy (BIS) devices utilize biophysical modeling to generate body composition data. The addition of body mass index (BMI) to modified Xitron-Hanai-based mixture equations improved BIS estimates of intracellular water (ICW), particularly at the extremes of BMI. A 3-compartment model for distinguishing excess fluid (ExF) from normally hydrated lean (NHLT) and adipose tissue may further improve BIS estimates. Objective: We aimed to validate a BIS approach based on the Chamney model for determining fat mass (FM) in healthy individuals (NHANES) and for measuring FM changes in individuals undergoing massive weight loss. Methods: Using adult NHANES 1999-2004 (2821 female, 3063 male) and longitudinal pre-topost- RYGB (15F) data, we compared dual-energy-X-ray absorptiometry (DXA) and BIS for FM. We applied BIS adiposity-corrected values to Chamney equations for normally hydrated lean and adipose tissue (NHLT, NHAT) and FM. Method agreement was evaluated by correlations, paired t-tests, root mean square error (RMSE), Bland- Altman (B-A) analysis, and concordance correlation coefficients (CCC). Results: Method agreement between BIS and DXAFM was good in healthy adults (r=0.96, CCC=0.93, p<.0001), and pre-to-post-RYGB (r=0.93-0.98, CCC=0.81-0.86, p<.001). Although cross-sectional FM measures differed, FM change measures post-RYGB did not (35.6±8.9 vs. 35.2±9.2 kg, BIS vs. DXA) and agreed well (r=0.84, p<.0001). The 15 subjects with follow-up measurements at 1 year lost 11.5±9.8 kg FFM by DXA, but only 1.3±2.5 kg of NHLT by BIS, suggesting that the FFM loss may have been mostly adipose tissue water. Conclusions: Incorporation of the Chamney model into BIS algorithms is a major conceptual advancement for assessing and monitoring body composition. Its ability to differentiate ICW and extracellular water (ECW) in NHLT and NHAT, as well as excess ECW is promising, and would facilitate lean tissue monitoring in obesity and acute/chronic disease.

Keywords

Bioelectrical Impedance. Obesity. Body Composition. Bariatric Surgery.Weight Loss. Nutrition Surveys

Resumo

Introdução: Os dispositivos de espectroscopia de bioimpedância (DEB) utilizam modelagem biofísica para gerar dados de composição corporal. A adição do índice de massa corporal (IMC) às equações de mistura modificadas com Xitron-Hanai modificadas melhorou as estimativas de DEB de água intracelular (AI), particularmente nos casos extremos do IMC. Um modelo de 3 compartimentos para distinguir o excesso de fluido (ExF) de magro normalmente hidratado (NHLT) e tecido adiposo pode ainda melhorar as estimativas do DEB. Objetivo: Pretendemos validar uma abordagem do DEB com base no modelo de Chamney para determinar a massa de gordura (MG) em indivíduos saudáveis (NHANES) e para medir mudanças de MG em indivíduos submetidos à perda de peso maciça. Método: Usando o NHANES adulto 1999-2004 (2821 mulheres, 3063 homens) e dados longitudinais pré-pós-RYGB (15 F), comparamos a absorção de raios-X de dupla energia (DXA) e DEB para MG. Aplicamos os valores corrigidos de adiposidade do BIS às equações de Chamney para tecidos magros e adiposos normalmente hidratados (NHLT, NHAT) e FM. O acordo de método foi avaliado por correlações, testes t pareados, erro quadrado médio (EQM), análise Bland-Altman (B-A) e coeficientes de correlação de concordância (CCC). Resultados: O acordo de método entre DEB e DXA MG foi bom em adultos saudáveis (r=0,96, CCC=0,93, p<.0001) e pré-pós-RYGB (r=0,93-0,98, CCC=0,81-0,86, p<0,001). Embora as medidas de MG transversais diferissem, as medidas de mudança de MG pós-RYGB não (35,6±8,9 vs. 35,2±9,2 kg, DEBvs. DXA) e concordaram bem (r=0,84, p<.0001). Os 15 sujeitos com medidas de seguimento ao 1 ano perderam 11,5±9,8 kg FFM por DXA, mas apenas 1,3±2,5 kg de NHLT pelo DEB, sugerindo que a perda de FFM pode ter sido principalmente água do tecido adiposo. Conclusões: A incorporação do modelo de Chamney em algoritmos DEB é um grande avanço conceitual para avaliar e monitorar a composição corporal. A sua capacidade de diferenciar AI e água extracelular (AE) no NHLT e NHAT, bem como o excesso de AE é promissor e facilitará a monitorização do tecido magro na obesidade e doença aguda/crônica.

Palavras-chave

Impedância Bioelétrica. Obesidade. Composição Corporal. Cirurgia Bariátrica.Perda de Peso. Inquéritos Nutricionais

Referências

1. Matthie JR. Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices. 2008;5(2):239-61.

2. De Lorenzo A, Andreoli A, Matthie J, Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol (1985).1997;82(5):1542-58.

3. Cox-Reijven PL, Soeters PB. Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measure dresistance values. Int J Obes Relat Metab Disord. 2000;24(3):271-80.

4. Mager JR, Sibley SD, Beckman TR, Kellogg TA, Earthman CP. Multifrequency bioelectrical impedance analysis and bioimpedance spectroscopy for monitoring fluid and body cell mass changes after gastric bypass surgery. Clin Nutr. 2008;27(6):832-41.

5. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy- Westphal A, et al. Body fluid volume determination via body composition spectroscopyin health and disease. Physiol Meas. 2006;27(9):921-33.

6. Chamney PW, Wabel P, Moissl UM, Müller MJ, Bosy-Westphal A, Korth O, et al. A whole-body model to distinguish excessfluid from the hydration of major body tissues. Am J Clin Nutr. 2007;85(1):80-9.

7. Broers NJ, Martens RJ, Cornelis T, Diederen NM, Wabel P, van der Sande FM, et al. Body composition in dialysis patients: a functional assessment of bioimpedance using different prediction models. J Ren Nutr. 2015;25(2):121-8.

8. Marcelli D, Usvyat LA, Kotanko P, Bayh I, Canaud B, Etter M, et al.; MONitoring Dialysis Outcomes (MONDO) Consortium. Body composition and survival in dialysis patients: results from an international cohort study. Clin J Am Soc Nephrol. 2015;10(7):1192-200.

9. Keane D, Chamney P, Heinke S, Lindley E. Use of the body composition monitor for fluid status measurements in subjects with high body mass index. Nephron. 2016;133(3):163-8.

10. NHANES 2003 - 2004: Bioelectrical Impedance Analysis Data Documentation, Codebook, and Frequencies. Washington: Centers for Disease Control and Prevention; 2004 [cited 2017 Aug 9]. Available from: https://wwwn.cdc.gov/nchs/ nhanes/2003-2004/BIX_C.htm

11. Levitt DG, Beckman LM, Mager JR, Valentine B, Sibley SD, Beckman TR, et al. Comparison of DXA and water measurements of body fat following gastric bypass surgery and a physiological model of body water, fat, and muscle composition. J Appl Physiol (1985). 2010;109(3):786-95.

12. Earthman CP, Matthie JR, Reid PM, Harper IT, Ravussin E, Howell WH. A comparison of bioimpedance methods for detection of body cell mass change in HIV infection. J Appl Physiol (1985). 2000;88(3):944-56.

13. Stevenson M, Nunes T, Heuer C, Marshall J, Sanchez J, Thornton R, et al. epiR: Tools for the analysis of epidemiological data; 2016.

14. Earthman CP. Body composition tools for assessment of adultmalnutrition at the bedside: a tutorial on research considerations and clinical applications. JPEN J Parenter Enteral Nutr. 2015;39(7):787-822.

15. Pourhassan M, Schautz B, Braun W, Gluer CC, Bosy-Westphal A, Müller MJ. Impact of body-composition methodology on the composition of weight loss and weight gain. Eur J Clin Nutr. 2013;67(5):446-54.

16. Valentine RJ, Misic MM, Kessinger RB, Mojtahedi MC, Evans EM. Location of body fat and body size impacts DXA soft tissue measures: a simulation study. Eur J Clin Nutr. 2008;62(4):553-9.

17. Das SK, Roberts SB, Kehayias JJ, Wang J, Hsu LK, Shikora SA, et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab. 2003;284(6):E1080-8.

18. Wabel P, Chamney P, Moissl U, Jirka T. Importance of wholebody bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009;27(1):75-80.

19. Wieskotten S, Heinke S, Wabel P, Moissl U, Becker J, Pirlich M, et al. Bioimpedance-based identification of malnutrition using fuzzy logic. Physiol Meas. 2008;29(5):639-54. 20. White JV, Guenter P, Jensen G, Malone A, Schofield M; Academy Malnutrition Work Group; A.S.P.E.N. Malnutrition Task Force; A.S.P.E.N. Board of Directors. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012;36(3):275-83.

21. Matthie JR, Huizenga R. Lose fat - not weight! [Internet]. In: The Obesity Society - 30th Annual Meeting; 2012 Sep 20-24; San Antonio, TX, USA [cited 2016 Jun 16]. p. S152. Available from: https://higherlogicdownload.s3.amazonaws.com/ OBESITY/004d4f70-37d5-434e-b24d-08a32dfdfcd9/UploadedImages/ Obesity2012-FinalProgram.pdf

22. Chamney PW, Wabel P, inventors; Fresenius Medical Care Deutschland GmbH, assignee. Method and a device for determining the hydration and/or nutrition status of a patient. US Patent US 7917202 B2. 2011 Mar 29.


Submetido em:
24/02/2017

Aceito em:
17/05/2017

653ac7a4a953957127228484 braspen Articles
Links & Downloads

BRASPEN Journal

Share this page
Page Sections